MakeItFrom.com
Menu (ESC)

ACI-ASTM CK35MN Steel vs. EN 1.8898 Steel

Both ACI-ASTM CK35MN steel and EN 1.8898 steel are iron alloys. They have 49% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CK35MN steel and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 40
18
Fatigue Strength, MPa 270
330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 650
600
Tensile Strength: Yield (Proof), MPa 310
490

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
49
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.2
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.9
1.6
Embodied Energy, MJ/kg 81
22
Embodied Water, L/kg 210
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 21
20
Thermal Diffusivity, mm2/s 3.3
13
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.035
0 to 0.16
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 43.4 to 51.8
96.7 to 99.98
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 6.0 to 6.8
0 to 0.2
Nickel (Ni), % 20 to 22
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.21 to 0.32
0 to 0.025
Phosphorus (P), % 0 to 0.035
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12