MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3M Steel vs. 7075 Aluminum

ACI-ASTM CN3M steel belongs to the iron alloys classification, while 7075 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN3M steel and the bottom bar is 7075 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
1.8 to 12
Fatigue Strength, MPa 150
110 to 190
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 80
26
Tensile Strength: Ultimate (UTS), MPa 500
240 to 590
Tensile Strength: Yield (Proof), MPa 190
120 to 510

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
98

Otherwise Unclassified Properties

Base Metal Price, % relative 31
10
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 5.9
8.3
Embodied Energy, MJ/kg 80
150
Embodied Water, L/kg 200
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
7.8 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 89
110 to 1870
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 17
22 to 54
Strength to Weight: Bending, points 17
28 to 52
Thermal Diffusivity, mm2/s 3.4
50
Thermal Shock Resistance, points 11
10 to 25

Alloy Composition

Aluminum (Al), % 0
86.9 to 91.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0.18 to 0.28
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 42.4 to 52.5
0 to 0.5
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 2.0
0 to 0.3
Molybdenum (Mo), % 4.5 to 5.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15