MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3M Steel vs. EN 1.6308 Steel

Both ACI-ASTM CN3M steel and EN 1.6308 steel are iron alloys. They have 50% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN3M steel and the bottom bar is EN 1.6308 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
23
Fatigue Strength, MPa 150
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 500
610
Tensile Strength: Yield (Proof), MPa 190
460

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 13
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 5.9
1.6
Embodied Energy, MJ/kg 80
22
Embodied Water, L/kg 200
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
130
Resilience: Unit (Modulus of Resilience), kJ/m3 89
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 3.4
10
Thermal Shock Resistance, points 11
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 20 to 22
0
Iron (Fe), % 42.4 to 52.5
96.4 to 97.9
Manganese (Mn), % 0 to 2.0
1.2 to 1.6
Molybdenum (Mo), % 4.5 to 5.5
0.45 to 0.55
Nickel (Ni), % 23 to 27
0.5 to 0.8
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0 to 0.030