MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3M Steel vs. C81500 Copper

ACI-ASTM CN3M steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN3M steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
17
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
44
Tensile Strength: Ultimate (UTS), MPa 500
350
Tensile Strength: Yield (Proof), MPa 190
280

Thermal Properties

Latent Heat of Fusion, J/g 310
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
320
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
82
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
83

Otherwise Unclassified Properties

Base Metal Price, % relative 31
31
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 5.9
2.6
Embodied Energy, MJ/kg 80
41
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
56
Resilience: Unit (Modulus of Resilience), kJ/m3 89
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17
11
Strength to Weight: Bending, points 17
12
Thermal Diffusivity, mm2/s 3.4
91
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 42.4 to 52.5
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.5 to 5.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5