MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3M Steel vs. C82700 Copper

ACI-ASTM CN3M steel belongs to the iron alloys classification, while C82700 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN3M steel and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
1.8
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
46
Tensile Strength: Ultimate (UTS), MPa 500
1200
Tensile Strength: Yield (Proof), MPa 190
1020

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1100
300
Melting Completion (Liquidus), °C 1450
950
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
21

Otherwise Unclassified Properties

Density, g/cm3 8.1
8.7
Embodied Carbon, kg CO2/kg material 5.9
12
Embodied Energy, MJ/kg 80
180
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
21
Resilience: Unit (Modulus of Resilience), kJ/m3 89
4260
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
38
Strength to Weight: Bending, points 17
29
Thermal Diffusivity, mm2/s 3.4
39
Thermal Shock Resistance, points 11
41

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0 to 0.090
Copper (Cu), % 0
94.6 to 96.7
Iron (Fe), % 42.4 to 52.5
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 4.5 to 5.5
0
Nickel (Ni), % 23 to 27
1.0 to 1.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5