MakeItFrom.com
Menu (ESC)

ACI-ASTM CN3M Steel vs. C84000 Brass

ACI-ASTM CN3M steel belongs to the iron alloys classification, while C84000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN3M steel and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
65
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
27
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
42
Tensile Strength: Ultimate (UTS), MPa 500
250
Tensile Strength: Yield (Proof), MPa 190
140

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1450
1040
Melting Onset (Solidus), °C 1400
940
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 13
72
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.1
8.6
Embodied Carbon, kg CO2/kg material 5.9
3.0
Embodied Energy, MJ/kg 80
49
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
58
Resilience: Unit (Modulus of Resilience), kJ/m3 89
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
8.2
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 3.4
22
Thermal Shock Resistance, points 11
9.0

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
82 to 89
Iron (Fe), % 42.4 to 52.5
0 to 0.4
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 4.5 to 5.5
0
Nickel (Ni), % 23 to 27
0.5 to 2.0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7