MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7M Steel vs. ASTM A182 Grade F92

Both ACI-ASTM CN7M steel and ASTM A182 grade F92 are iron alloys. They have 53% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN7M steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 44
22
Fatigue Strength, MPa 190
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Tensile Strength: Ultimate (UTS), MPa 480
690
Tensile Strength: Yield (Proof), MPa 200
500

Thermal Properties

Latent Heat of Fusion, J/g 310
260
Maximum Temperature: Mechanical, °C 1100
590
Melting Completion (Liquidus), °C 1410
1490
Melting Onset (Solidus), °C 1450
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 21
26
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 5.6
2.8
Embodied Energy, MJ/kg 78
40
Embodied Water, L/kg 210
89

Common Calculations

PREN (Pitting Resistance) 29
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 5.6
6.9
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.070
0.070 to 0.13
Chromium (Cr), % 19 to 22
8.5 to 9.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 37.4 to 48.5
85.8 to 89.1
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0.3 to 0.6
Nickel (Ni), % 27.5 to 30.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.5
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010