MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7M Steel vs. Grade 12 Titanium

ACI-ASTM CN7M steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN7M steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
170
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 44
21
Fatigue Strength, MPa 190
280
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 480
530
Tensile Strength: Yield (Proof), MPa 200
410

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1100
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1450
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 15
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
37
Density, g/cm3 8.1
4.5
Embodied Carbon, kg CO2/kg material 5.6
31
Embodied Energy, MJ/kg 78
500
Embodied Water, L/kg 210
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 17
32
Thermal Diffusivity, mm2/s 5.6
8.5
Thermal Shock Resistance, points 12
37

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 3.0 to 4.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 37.4 to 48.5
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 2.0 to 3.0
0.2 to 0.4
Nickel (Ni), % 27.5 to 30.5
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4