MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7M Steel vs. S43940 Stainless Steel

Both ACI-ASTM CN7M steel and S43940 stainless steel are iron alloys. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN7M steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 44
21
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 480
490
Tensile Strength: Yield (Proof), MPa 200
280

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Corrosion, °C 430
540
Maximum Temperature: Mechanical, °C 1100
890
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 15
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
12
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 5.6
2.6
Embodied Energy, MJ/kg 78
38
Embodied Water, L/kg 210
120

Common Calculations

PREN (Pitting Resistance) 29
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
86
Resilience: Unit (Modulus of Resilience), kJ/m3 110
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 5.6
6.8
Thermal Shock Resistance, points 12
18

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 19 to 22
17.5 to 18.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 37.4 to 48.5
78.2 to 82.1
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 27.5 to 30.5
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.040
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6