MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 2618A Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 2618A aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 2618A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 39
4.5
Fatigue Strength, MPa 200
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 540
440
Tensile Strength: Yield (Proof), MPa 230
410

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 1040
230
Melting Completion (Liquidus), °C 1400
670
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 5.1
8.4
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
19
Resilience: Unit (Modulus of Resilience), kJ/m3 140
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 19
41
Strength to Weight: Bending, points 19
44
Thermal Diffusivity, mm2/s 3.2
59
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 0
91.5 to 95.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 1.5 to 2.0
1.8 to 2.7
Iron (Fe), % 45.4 to 53.5
0.9 to 1.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0.8 to 1.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0.15 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15