MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 384.0 Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 384.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 384.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
85
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 39
2.5
Fatigue Strength, MPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 540
330
Tensile Strength: Yield (Proof), MPa 230
170

Thermal Properties

Latent Heat of Fusion, J/g 340
550
Maximum Temperature: Mechanical, °C 1040
170
Melting Completion (Liquidus), °C 1400
580
Melting Onset (Solidus), °C 1350
530
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 12
96
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 5.1
7.4
Embodied Energy, MJ/kg 71
140
Embodied Water, L/kg 180
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
37
Thermal Diffusivity, mm2/s 3.2
39
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 0
77.3 to 86.5
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 1.5 to 2.0
3.0 to 4.5
Iron (Fe), % 45.4 to 53.5
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0 to 0.5
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
10.5 to 12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5