MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 5088 Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
29
Fatigue Strength, MPa 200
180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 540
310
Tensile Strength: Yield (Proof), MPa 230
150

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 1040
200
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.1
9.0
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
76
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
38
Thermal Diffusivity, mm2/s 3.2
51
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0 to 0.15
Copper (Cu), % 1.5 to 2.0
0 to 0.25
Iron (Fe), % 45.4 to 53.5
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15