MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 511.0 Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 511.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 511.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
50
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
3.0
Fatigue Strength, MPa 200
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 540
150
Tensile Strength: Yield (Proof), MPa 230
83

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 1040
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.1
8.8
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
3.7
Resilience: Unit (Modulus of Resilience), kJ/m3 140
51
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 3.2
59
Thermal Shock Resistance, points 13
6.5

Alloy Composition

Aluminum (Al), % 0
93.3 to 96.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 1.5 to 2.0
0 to 0.15
Iron (Fe), % 45.4 to 53.5
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15