MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 5754 Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 5754 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 5754 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
2.0 to 19
Fatigue Strength, MPa 200
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 540
200 to 330
Tensile Strength: Yield (Proof), MPa 230
80 to 280

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 1040
190
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1350
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.1
8.7
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
6.1 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 140
47 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 19
21 to 34
Strength to Weight: Bending, points 19
28 to 39
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 13
8.9 to 14

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.4
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0 to 0.3
Copper (Cu), % 1.5 to 2.0
0 to 0.1
Iron (Fe), % 45.4 to 53.5
0 to 0.4
Magnesium (Mg), % 0
2.6 to 3.6
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15