MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 6063A Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 39
6.7 to 18
Fatigue Strength, MPa 200
53 to 80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 540
130 to 260
Tensile Strength: Yield (Proof), MPa 230
55 to 200

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 1040
160
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 5.1
8.3
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
13 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 140
22 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 19
13 to 26
Strength to Weight: Bending, points 19
21 to 33
Thermal Diffusivity, mm2/s 3.2
83
Thermal Shock Resistance, points 13
5.6 to 11

Alloy Composition

Aluminum (Al), % 0
97.5 to 99
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0 to 0.050
Copper (Cu), % 1.5 to 2.0
0 to 0.1
Iron (Fe), % 45.4 to 53.5
0.15 to 0.35
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15