MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. 7204 Aluminum

ACI-ASTM CN7MS steel belongs to the iron alloys classification, while 7204 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is 7204 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 39
11 to 13
Fatigue Strength, MPa 200
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 540
220 to 380
Tensile Strength: Yield (Proof), MPa 230
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 340
380
Maximum Temperature: Mechanical, °C 1040
210
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 5.1
8.4
Embodied Energy, MJ/kg 71
150
Embodied Water, L/kg 180
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
25 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 19
21 to 36
Strength to Weight: Bending, points 19
28 to 40
Thermal Diffusivity, mm2/s 3.2
58
Thermal Shock Resistance, points 13
9.4 to 16

Alloy Composition

Aluminum (Al), % 0
90.5 to 94.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 18 to 20
0 to 0.3
Copper (Cu), % 1.5 to 2.0
0 to 0.2
Iron (Fe), % 45.4 to 53.5
0 to 0.35
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 2.5 to 3.5
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15