MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. AISI 348 Stainless Steel

Both ACI-ASTM CN7MS steel and AISI 348 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is AISI 348 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
41
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 540
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Corrosion, °C 420
480
Maximum Temperature: Mechanical, °C 1040
940
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1350
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 16
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 5.1
3.7
Embodied Energy, MJ/kg 71
54
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 28
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 3.2
4.2
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 18 to 20
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 45.4 to 53.5
63.8 to 74
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 2.5 to 3.5
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1