MakeItFrom.com
Menu (ESC)

ACI-ASTM CN7MS Steel vs. EN 1.4962 Stainless Steel

Both ACI-ASTM CN7MS steel and EN 1.4962 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CN7MS steel and the bottom bar is EN 1.4962 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
22 to 34
Fatigue Strength, MPa 200
210 to 330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 540
630 to 690
Tensile Strength: Yield (Proof), MPa 230
260 to 490

Thermal Properties

Latent Heat of Fusion, J/g 340
280
Maximum Temperature: Corrosion, °C 420
510
Maximum Temperature: Mechanical, °C 1040
910
Melting Completion (Liquidus), °C 1400
1480
Melting Onset (Solidus), °C 1350
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 16
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
23
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 5.1
4.1
Embodied Energy, MJ/kg 71
59
Embodied Water, L/kg 180
150

Common Calculations

PREN (Pitting Resistance) 28
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170 to 610
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
21 to 24
Strength to Weight: Bending, points 19
20 to 21
Thermal Diffusivity, mm2/s 3.2
3.7
Thermal Shock Resistance, points 13
14 to 16

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.070
0.070 to 0.15
Chromium (Cr), % 18 to 20
15.5 to 17.5
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 45.4 to 53.5
62.1 to 69
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 2.5 to 3.0
0
Nickel (Ni), % 22 to 25
12.5 to 14.5
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 2.5 to 3.5
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.7
Tungsten (W), % 0
2.5 to 3.0