MakeItFrom.com
Menu (ESC)

ACI-ASTM CT15C Steel vs. EN 1.4613 Stainless Steel

Both ACI-ASTM CT15C steel and EN 1.4613 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CT15C steel and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 130
180
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Tensile Strength: Ultimate (UTS), MPa 500
530
Tensile Strength: Yield (Proof), MPa 190
280

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 560
550
Maximum Temperature: Mechanical, °C 1080
1050
Melting Completion (Liquidus), °C 1410
1430
Melting Onset (Solidus), °C 1360
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 12
19
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 6.1
2.6
Embodied Energy, MJ/kg 88
38
Embodied Water, L/kg 190
150

Common Calculations

PREN (Pitting Resistance) 20
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
91
Resilience: Unit (Modulus of Resilience), kJ/m3 93
190
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 3.2
5.2
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0.050 to 0.15
0 to 0.030
Chromium (Cr), % 19 to 21
22 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 40.3 to 49.2
70.3 to 77.8
Manganese (Mn), % 0.15 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 31 to 34
0 to 0.5
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0.15 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0