MakeItFrom.com
Menu (ESC)

ACI-ASTM CT15C Steel vs. C67000 Bronze

ACI-ASTM CT15C steel belongs to the iron alloys classification, while C67000 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CT15C steel and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
5.6 to 11
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 500
660 to 880
Tensile Strength: Yield (Proof), MPa 190
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1080
160
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1360
850
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 12
99
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
22
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
25

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 6.1
2.9
Embodied Energy, MJ/kg 88
49
Embodied Water, L/kg 190
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 93
560 to 1290
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
23 to 31
Strength to Weight: Bending, points 17
21 to 26
Thermal Diffusivity, mm2/s 3.2
30
Thermal Shock Resistance, points 12
21 to 29

Alloy Composition

Aluminum (Al), % 0
3.0 to 6.0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 0
63 to 68
Iron (Fe), % 40.3 to 49.2
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.15 to 1.5
2.5 to 5.0
Nickel (Ni), % 31 to 34
0
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
21.8 to 32.5
Residuals, % 0
0 to 0.5