MakeItFrom.com
Menu (ESC)

ACI-ASTM CT15C Steel vs. C99600 Bronze

ACI-ASTM CT15C steel belongs to the iron alloys classification, while C99600 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CT15C steel and the bottom bar is C99600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 23
27 to 34
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
56
Tensile Strength: Ultimate (UTS), MPa 500
560
Tensile Strength: Yield (Proof), MPa 190
250 to 300

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1080
200
Melting Completion (Liquidus), °C 1410
1100
Melting Onset (Solidus), °C 1360
1050
Specific Heat Capacity, J/kg-K 470
440
Thermal Expansion, µm/m-K 16
19

Otherwise Unclassified Properties

Base Metal Price, % relative 36
22
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 6.1
3.2
Embodied Energy, MJ/kg 88
51
Embodied Water, L/kg 190
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 93
210 to 310
Stiffness to Weight: Axial, points 14
10
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 17
19
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.8
Carbon (C), % 0.050 to 0.15
0 to 0.050
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
50.8 to 60
Iron (Fe), % 40.3 to 49.2
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0.15 to 1.5
39 to 45
Nickel (Ni), % 31 to 34
0 to 0.2
Niobium (Nb), % 0.5 to 1.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 1.5
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.3