MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. EN AC-44500 Aluminum

AISI 201 stainless steel belongs to the iron alloys classification, while EN AC-44500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is EN AC-44500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 440
68
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 4.6 to 51
1.1
Fatigue Strength, MPa 280 to 600
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
270
Tensile Strength: Yield (Proof), MPa 300 to 1080
160

Thermal Properties

Latent Heat of Fusion, J/g 280
570
Maximum Temperature: Mechanical, °C 880
170
Melting Completion (Liquidus), °C 1410
590
Melting Onset (Solidus), °C 1370
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.7
2.5
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 38
140
Embodied Water, L/kg 140
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
180
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 23 to 52
29
Strength to Weight: Bending, points 22 to 37
36
Thermal Diffusivity, mm2/s 4.0
57
Thermal Shock Resistance, points 14 to 32
13

Alloy Composition

Aluminum (Al), % 0
83.7 to 89.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 67.5 to 75
0 to 1.0
Magnesium (Mg), % 0
0 to 0.4
Manganese (Mn), % 5.5 to 7.5
0 to 0.55
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
10.5 to 13.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.25