MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. Grade C-6 Titanium

AISI 201 stainless steel belongs to the iron alloys classification, while grade C-6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is grade C-6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 440
290
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 4.6 to 51
9.0
Fatigue Strength, MPa 280 to 600
460
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
890
Tensile Strength: Yield (Proof), MPa 300 to 1080
830

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 880
310
Melting Completion (Liquidus), °C 1410
1580
Melting Onset (Solidus), °C 1370
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
7.8
Thermal Expansion, µm/m-K 17
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
30
Embodied Energy, MJ/kg 38
480
Embodied Water, L/kg 140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
78
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
3300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 23 to 52
55
Strength to Weight: Bending, points 22 to 37
46
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 14 to 32
63

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 67.5 to 75
0 to 0.5
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.050
Nitrogen (N), % 0 to 0.25
0
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.7 to 94
Residuals, % 0
0 to 0.4