MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. C37100 Brass

AISI 201 stainless steel belongs to the iron alloys classification, while C37100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is C37100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 4.6 to 51
8.0 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 450 to 840
260 to 300
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
370 to 520
Tensile Strength: Yield (Proof), MPa 300 to 1080
150 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 880
120
Melting Completion (Liquidus), °C 1410
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
30

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 38
45
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
38 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
110 to 750
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23 to 52
13 to 18
Strength to Weight: Bending, points 22 to 37
14 to 18
Thermal Diffusivity, mm2/s 4.0
39
Thermal Shock Resistance, points 14 to 32
12 to 17

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 67.5 to 75
0 to 0.15
Lead (Pb), % 0
0.6 to 1.2
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
36.3 to 41.4
Residuals, % 0
0 to 0.4