MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. C42500 Brass

AISI 201 stainless steel belongs to the iron alloys classification, while C42500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.6 to 51
2.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 450 to 840
220 to 360
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
310 to 630
Tensile Strength: Yield (Proof), MPa 300 to 1080
120 to 590

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 880
180
Melting Completion (Liquidus), °C 1410
1030
Melting Onset (Solidus), °C 1370
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 12
30
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
12 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
64 to 1570
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 23 to 52
9.9 to 20
Strength to Weight: Bending, points 22 to 37
12 to 19
Thermal Diffusivity, mm2/s 4.0
36
Thermal Shock Resistance, points 14 to 32
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 67.5 to 75
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0
0 to 0.5