MakeItFrom.com
Menu (ESC)

AISI 201 Stainless Steel vs. C93700 Bronze

AISI 201 stainless steel belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 201 stainless steel and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 4.6 to 51
20
Fatigue Strength, MPa 280 to 600
90
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
37
Tensile Strength: Ultimate (UTS), MPa 650 to 1450
240
Tensile Strength: Yield (Proof), MPa 300 to 1080
130

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 880
140
Melting Completion (Liquidus), °C 1410
930
Melting Onset (Solidus), °C 1370
760
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 38
57
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 340
40
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 23 to 52
7.5
Strength to Weight: Bending, points 22 to 37
9.6
Thermal Diffusivity, mm2/s 4.0
15
Thermal Shock Resistance, points 14 to 32
9.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 67.5 to 75
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0