MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. A444.0 Aluminum

AISI 201L stainless steel belongs to the iron alloys classification, while A444.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 22 to 46
18
Fatigue Strength, MPa 270 to 530
37
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
160
Tensile Strength: Yield (Proof), MPa 290 to 790
66

Thermal Properties

Latent Heat of Fusion, J/g 280
500
Maximum Temperature: Mechanical, °C 880
170
Melting Completion (Liquidus), °C 1410
630
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.6
7.9
Embodied Energy, MJ/kg 38
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
24
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
31
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 27 to 37
17
Strength to Weight: Bending, points 24 to 30
25
Thermal Diffusivity, mm2/s 4.0
68
Thermal Shock Resistance, points 16 to 23
7.3

Alloy Composition

Aluminum (Al), % 0
91.6 to 93.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 67.9 to 75
0 to 0.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 5.5 to 7.5
0 to 0.1
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15