MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. AWS BNi-9

AISI 201L stainless steel belongs to the iron alloys classification, while AWS BNi-9 belongs to the nickel alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 19 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
72
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
580

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Melting Completion (Liquidus), °C 1410
1060
Melting Onset (Solidus), °C 1370
1060
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 17
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.6
9.3
Embodied Energy, MJ/kg 38
130
Embodied Water, L/kg 140
260

Common Calculations

Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27 to 37
19
Strength to Weight: Bending, points 24 to 30
18
Thermal Shock Resistance, points 16 to 23
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 16 to 18
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 67.9 to 75
0 to 1.5
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
77.1 to 83.3
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5