MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. EN 1.4371 Stainless Steel

Both AISI 201L stainless steel and EN 1.4371 stainless steel are iron alloys. They have a very high 99% of their average alloy composition in common.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is EN 1.4371 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 320
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 22 to 46
45 to 51
Fatigue Strength, MPa 270 to 530
290 to 340
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 520 to 660
520 to 540
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
740 to 750
Tensile Strength: Yield (Proof), MPa 290 to 790
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 410
410
Maximum Temperature: Mechanical, °C 880
880
Melting Completion (Liquidus), °C 1410
1410
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
38
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
270 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
250 to 300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27 to 37
27
Strength to Weight: Bending, points 24 to 30
24
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 16 to 23
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16 to 18
16 to 17.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 67.9 to 75
66.7 to 74.4
Manganese (Mn), % 5.5 to 7.5
6.0 to 8.0
Nickel (Ni), % 3.5 to 5.5
3.5 to 5.5
Nitrogen (N), % 0 to 0.25
0.15 to 0.25
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015