MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. EN 1.4923 Stainless Steel

Both AISI 201L stainless steel and EN 1.4923 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 22 to 46
12 to 21
Fatigue Strength, MPa 270 to 530
300 to 440
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 520 to 660
540 to 590
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
870 to 980
Tensile Strength: Yield (Proof), MPa 290 to 790
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 880
740
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
24
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 38
41
Embodied Water, L/kg 140
100

Common Calculations

PREN (Pitting Resistance) 19
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
570 to 1580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27 to 37
31 to 35
Strength to Weight: Bending, points 24 to 30
26 to 28
Thermal Diffusivity, mm2/s 4.0
6.5
Thermal Shock Resistance, points 16 to 23
30 to 34

Alloy Composition

Carbon (C), % 0 to 0.030
0.18 to 0.24
Chromium (Cr), % 16 to 18
11 to 12.5
Iron (Fe), % 67.9 to 75
83.5 to 87.1
Manganese (Mn), % 5.5 to 7.5
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 3.5 to 5.5
0.3 to 0.8
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0.25 to 0.35

Comparable Variants