MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. C64800 Bronze

AISI 201L stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 22 to 46
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 520 to 660
380
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
640
Tensile Strength: Yield (Proof), MPa 290 to 790
630

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 880
200
Melting Completion (Liquidus), °C 1410
1090
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
260
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
65
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
66

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 38
43
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
51
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 37
20
Strength to Weight: Bending, points 24 to 30
19
Thermal Diffusivity, mm2/s 4.0
75
Thermal Shock Resistance, points 16 to 23
23

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 67.9 to 75
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.5
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.5
Silicon (Si), % 0 to 0.75
0.2 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5