MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. C68100 Brass

AISI 201L stainless steel belongs to the iron alloys classification, while C68100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is C68100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 22 to 46
29
Poisson's Ratio 0.28
0.3
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
380
Tensile Strength: Yield (Proof), MPa 290 to 790
140

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 880
120
Melting Completion (Liquidus), °C 1410
890
Melting Onset (Solidus), °C 1370
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
98
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
27

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
47
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
86
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
94
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27 to 37
13
Strength to Weight: Bending, points 24 to 30
15
Thermal Diffusivity, mm2/s 4.0
32
Thermal Shock Resistance, points 16 to 23
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
56 to 60
Iron (Fe), % 67.9 to 75
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 5.5 to 7.5
0.010 to 0.5
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.040 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.75 to 1.1
Zinc (Zn), % 0
36.4 to 43
Residuals, % 0
0 to 0.5