MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. C90900 Bronze

AISI 201L stainless steel belongs to the iron alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 320
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 46
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
280
Tensile Strength: Yield (Proof), MPa 290 to 790
140

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 880
160
Melting Completion (Liquidus), °C 1410
980
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 15
65
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.9
Embodied Energy, MJ/kg 38
64
Embodied Water, L/kg 140
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
35
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 37
8.8
Strength to Weight: Bending, points 24 to 30
11
Thermal Diffusivity, mm2/s 4.0
21
Thermal Shock Resistance, points 16 to 23
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 67.9 to 75
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.5
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 0.75
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
12 to 14
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6