MakeItFrom.com
Menu (ESC)

AISI 201L Stainless Steel vs. R56406 Titanium

AISI 201L stainless steel belongs to the iron alloys classification, while R56406 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 201L stainless steel and the bottom bar is R56406 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 46
9.1
Fatigue Strength, MPa 270 to 530
480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 740 to 1040
980
Tensile Strength: Yield (Proof), MPa 290 to 790
850

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 880
340
Melting Completion (Liquidus), °C 1410
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
38
Embodied Energy, MJ/kg 38
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
85
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 1570
3420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27 to 37
61
Strength to Weight: Bending, points 24 to 30
49
Thermal Diffusivity, mm2/s 4.0
2.8
Thermal Shock Resistance, points 16 to 23
69

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 67.9 to 75
0 to 0.3
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0 to 0.25
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.1 to 91
Vanadium (V), % 0
3.5 to 4.5