MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. 852.0 Aluminum

AISI 201LN stainless steel belongs to the iron alloys classification, while 852.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is 852.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
64
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 25 to 51
3.4
Fatigue Strength, MPa 340 to 540
73
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 530 to 680
130
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
200
Tensile Strength: Yield (Proof), MPa 350 to 770
150

Thermal Properties

Latent Heat of Fusion, J/g 280
370
Maximum Temperature: Mechanical, °C 880
190
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1370
210
Specific Heat Capacity, J/kg-K 480
840
Thermal Conductivity, W/m-K 15
180
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
15
Density, g/cm3 7.7
3.2
Embodied Carbon, kg CO2/kg material 2.6
8.5
Embodied Energy, MJ/kg 38
160
Embodied Water, L/kg 140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
6.2
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
160
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
43
Strength to Weight: Axial, points 27 to 38
17
Strength to Weight: Bending, points 24 to 30
24
Thermal Diffusivity, mm2/s 4.0
65
Thermal Shock Resistance, points 16 to 23
8.7

Alloy Composition

Aluminum (Al), % 0
86.6 to 91.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0 to 1.0
1.7 to 2.3
Iron (Fe), % 67.9 to 73.5
0 to 0.7
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 6.4 to 7.5
0 to 0.1
Nickel (Ni), % 4.0 to 5.0
0.9 to 1.5
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3