AISI 201LN Stainless Steel vs. AISI 304 Stainless Steel
Both AISI 201LN stainless steel and AISI 304 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is AISI 304 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 210 to 320 | |
170 to 360 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
200 |
Elongation at Break, % | 25 to 51 | |
8.0 to 43 |
Fatigue Strength, MPa | 340 to 540 | |
210 to 440 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 77 | |
77 |
Shear Strength, MPa | 530 to 680 | |
400 to 690 |
Tensile Strength: Ultimate (UTS), MPa | 740 to 1060 | |
580 to 1180 |
Tensile Strength: Yield (Proof), MPa | 350 to 770 | |
230 to 860 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
290 |
Maximum Temperature: Corrosion, °C | 410 | |
420 |
Maximum Temperature: Mechanical, °C | 880 | |
710 |
Melting Completion (Liquidus), °C | 1410 | |
1450 |
Melting Onset (Solidus), °C | 1370 | |
1400 |
Specific Heat Capacity, J/kg-K | 480 | |
480 |
Thermal Conductivity, W/m-K | 15 | |
16 |
Thermal Expansion, µm/m-K | 17 | |
17 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
2.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.9 | |
2.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 12 | |
15 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.6 | |
3.0 |
Embodied Energy, MJ/kg | 38 | |
43 |
Embodied Water, L/kg | 140 | |
150 |
Common Calculations
PREN (Pitting Resistance) | 20 | |
20 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 230 to 310 | |
86 to 250 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 310 to 1520 | |
140 to 1870 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 27 to 38 | |
21 to 42 |
Strength to Weight: Bending, points | 24 to 30 | |
20 to 32 |
Thermal Diffusivity, mm2/s | 4.0 | |
4.2 |
Thermal Shock Resistance, points | 16 to 23 | |
12 to 25 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0 to 0.080 |
Chromium (Cr), % | 16 to 17.5 | |
18 to 20 |
Copper (Cu), % | 0 to 1.0 | |
0 |
Iron (Fe), % | 67.9 to 73.5 | |
66.5 to 74 |
Manganese (Mn), % | 6.4 to 7.5 | |
0 to 2.0 |
Nickel (Ni), % | 4.0 to 5.0 | |
8.0 to 10.5 |
Nitrogen (N), % | 0.1 to 0.25 | |
0 to 0.1 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.75 | |
0 to 0.75 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.030 |