AISI 201LN Stainless Steel vs. EN 1.5525 Steel
Both AISI 201LN stainless steel and EN 1.5525 steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is EN 1.5525 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 210 to 320 | |
130 to 180 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 25 to 51 | |
11 to 21 |
Fatigue Strength, MPa | 340 to 540 | |
210 to 310 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
73 |
Shear Strength, MPa | 530 to 680 | |
310 to 350 |
Tensile Strength: Ultimate (UTS), MPa | 740 to 1060 | |
440 to 1440 |
Tensile Strength: Yield (Proof), MPa | 350 to 770 | |
300 to 490 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 880 | |
400 |
Melting Completion (Liquidus), °C | 1410 | |
1460 |
Melting Onset (Solidus), °C | 1370 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
50 |
Thermal Expansion, µm/m-K | 17 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
7.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.9 | |
8.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 12 | |
1.9 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.6 | |
1.4 |
Embodied Energy, MJ/kg | 38 | |
19 |
Embodied Water, L/kg | 140 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 230 to 310 | |
44 to 240 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 310 to 1520 | |
240 to 640 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 27 to 38 | |
16 to 51 |
Strength to Weight: Bending, points | 24 to 30 | |
16 to 36 |
Thermal Diffusivity, mm2/s | 4.0 | |
13 |
Thermal Shock Resistance, points | 16 to 23 | |
13 to 42 |
Alloy Composition
Boron (B), % | 0 | |
0.00080 to 0.0050 |
Carbon (C), % | 0 to 0.030 | |
0.18 to 0.23 |
Chromium (Cr), % | 16 to 17.5 | |
0 to 0.3 |
Copper (Cu), % | 0 to 1.0 | |
0 to 0.25 |
Iron (Fe), % | 67.9 to 73.5 | |
97.7 to 98.9 |
Manganese (Mn), % | 6.4 to 7.5 | |
0.9 to 1.2 |
Nickel (Ni), % | 4.0 to 5.0 | |
0 |
Nitrogen (N), % | 0.1 to 0.25 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.025 |
Silicon (Si), % | 0 to 0.75 | |
0 to 0.3 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.025 |