MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. EN 1.8865 Steel

Both AISI 201LN stainless steel and EN 1.8865 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is EN 1.8865 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25 to 51
19
Fatigue Strength, MPa 340 to 540
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 530 to 680
410
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
660
Tensile Strength: Yield (Proof), MPa 350 to 770
500

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 880
420
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
3.2
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 38
24
Embodied Water, L/kg 140
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
120
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 38
23
Strength to Weight: Bending, points 24 to 30
21
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 16 to 23
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0 to 0.18
Chromium (Cr), % 16 to 17.5
0 to 1.0
Copper (Cu), % 0 to 1.0
0 to 0.3
Iron (Fe), % 67.9 to 73.5
93.6 to 100
Manganese (Mn), % 6.4 to 7.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 4.0 to 5.0
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.1 to 0.25
0 to 0.015
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.0050
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15