MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. EN 2.4632 Nickel

AISI 201LN stainless steel belongs to the iron alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25 to 51
17
Fatigue Strength, MPa 340 to 540
430
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
76
Shear Strength, MPa 530 to 680
770
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
1250
Tensile Strength: Yield (Proof), MPa 350 to 770
780

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 880
1010
Melting Completion (Liquidus), °C 1410
1340
Melting Onset (Solidus), °C 1370
1290
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
75
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.6
9.4
Embodied Energy, MJ/kg 38
130
Embodied Water, L/kg 140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
180
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
1570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27 to 38
42
Strength to Weight: Bending, points 24 to 30
31
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 16 to 23
39

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.030
0 to 0.13
Chromium (Cr), % 16 to 17.5
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 67.9 to 73.5
0 to 1.5
Manganese (Mn), % 6.4 to 7.5
0 to 1.0
Nickel (Ni), % 4.0 to 5.0
49 to 64
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
2.0 to 3.0
Zirconium (Zr), % 0
0 to 0.15