MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. Grade 37 Titanium

AISI 201LN stainless steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25 to 51
22
Fatigue Strength, MPa 340 to 540
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 530 to 680
240
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
390
Tensile Strength: Yield (Proof), MPa 350 to 770
250

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 880
310
Melting Completion (Liquidus), °C 1410
1650
Melting Onset (Solidus), °C 1370
1600
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 38
500
Embodied Water, L/kg 140
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
76
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27 to 38
24
Strength to Weight: Bending, points 24 to 30
26
Thermal Diffusivity, mm2/s 4.0
8.4
Thermal Shock Resistance, points 16 to 23
29

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 67.9 to 73.5
0 to 0.3
Manganese (Mn), % 6.4 to 7.5
0
Nickel (Ni), % 4.0 to 5.0
0
Nitrogen (N), % 0.1 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
96.9 to 99
Residuals, % 0
0 to 0.4