MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. C32000 Brass

AISI 201LN stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25 to 51
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
41
Shear Strength, MPa 530 to 680
180 to 280
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
270 to 470
Tensile Strength: Yield (Proof), MPa 350 to 770
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 880
170
Melting Completion (Liquidus), °C 1410
1020
Melting Onset (Solidus), °C 1370
990
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
37

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
28 to 680
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 38
8.8 to 15
Strength to Weight: Bending, points 24 to 30
11 to 16
Thermal Diffusivity, mm2/s 4.0
47
Thermal Shock Resistance, points 16 to 23
9.5 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0 to 1.0
83.5 to 86.5
Iron (Fe), % 67.9 to 73.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 6.4 to 7.5
0
Nickel (Ni), % 4.0 to 5.0
0 to 0.25
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4