MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. C66100 Bronze

AISI 201LN stainless steel belongs to the iron alloys classification, while C66100 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 25 to 51
8.0 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 530 to 680
280 to 460
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
410 to 790
Tensile Strength: Yield (Proof), MPa 350 to 770
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 880
200
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1370
1000
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
34
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
29
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
42
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
60 to 790
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27 to 38
13 to 25
Strength to Weight: Bending, points 24 to 30
14 to 22
Thermal Diffusivity, mm2/s 4.0
9.7
Thermal Shock Resistance, points 16 to 23
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0 to 1.0
92 to 97
Iron (Fe), % 67.9 to 73.5
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Manganese (Mn), % 6.4 to 7.5
0 to 1.5
Nickel (Ni), % 4.0 to 5.0
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
2.8 to 3.5
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5