MakeItFrom.com
Menu (ESC)

AISI 201LN Stainless Steel vs. C66300 Brass

AISI 201LN stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 201LN stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 25 to 51
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 530 to 680
290 to 470
Tensile Strength: Ultimate (UTS), MPa 740 to 1060
460 to 810
Tensile Strength: Yield (Proof), MPa 350 to 770
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 880
180
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1370
1000
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
26

Otherwise Unclassified Properties

Base Metal Price, % relative 12
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
46
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230 to 310
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 1520
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27 to 38
15 to 26
Strength to Weight: Bending, points 24 to 30
15 to 22
Thermal Diffusivity, mm2/s 4.0
32
Thermal Shock Resistance, points 16 to 23
16 to 28

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 17.5
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 1.0
84.5 to 87.5
Iron (Fe), % 67.9 to 73.5
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 6.4 to 7.5
0
Nickel (Ni), % 4.0 to 5.0
0
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 0.35
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5