MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. 1050 Aluminum

AISI 202 stainless steel belongs to the iron alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 14 to 45
4.6 to 37
Fatigue Strength, MPa 290 to 330
31 to 57
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 490 to 590
52 to 81
Tensile Strength: Ultimate (UTS), MPa 700 to 980
76 to 140
Tensile Strength: Yield (Proof), MPa 310 to 580
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1360
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
230
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
61
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
200

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
160
Embodied Water, L/kg 150
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
4.6 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25 to 35
7.8 to 14
Strength to Weight: Bending, points 23 to 29
15 to 22
Thermal Diffusivity, mm2/s 4.0
94
Thermal Shock Resistance, points 15 to 21
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 63.5 to 71.5
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 7.5 to 10
0 to 0.050
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050

Comparable Variants