MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. 6016 Aluminum

AISI 202 stainless steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 14 to 45
11 to 27
Fatigue Strength, MPa 290 to 330
68 to 89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 490 to 590
130 to 170
Tensile Strength: Ultimate (UTS), MPa 700 to 980
200 to 280
Tensile Strength: Yield (Proof), MPa 310 to 580
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 910
160
Melting Completion (Liquidus), °C 1400
660
Melting Onset (Solidus), °C 1360
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
190 to 210
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
82 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25 to 35
21 to 29
Strength to Weight: Bending, points 23 to 29
29 to 35
Thermal Diffusivity, mm2/s 4.0
77 to 86
Thermal Shock Resistance, points 15 to 21
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 63.5 to 71.5
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 7.5 to 10
0 to 0.2
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
1.0 to 1.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15