MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. EN 1.8201 Steel

Both AISI 202 stainless steel and EN 1.8201 steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 45
20
Fatigue Strength, MPa 290 to 330
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 490 to 590
390
Tensile Strength: Ultimate (UTS), MPa 700 to 980
630
Tensile Strength: Yield (Proof), MPa 310 to 580
450

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 910
450
Melting Completion (Liquidus), °C 1400
1500
Melting Onset (Solidus), °C 1360
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.5
Embodied Energy, MJ/kg 40
36
Embodied Water, L/kg 150
59

Common Calculations

PREN (Pitting Resistance) 20
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 35
22
Strength to Weight: Bending, points 23 to 29
20
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 15 to 21
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.15
0.040 to 0.1
Chromium (Cr), % 17 to 19
1.9 to 2.6
Iron (Fe), % 63.5 to 71.5
93.6 to 96.2
Manganese (Mn), % 7.5 to 10
0.1 to 0.6
Molybdenum (Mo), % 0
0.050 to 0.3
Nickel (Ni), % 4.0 to 6.0
0
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0 to 0.25
0 to 0.015
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3