MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. EN AC-46500 Aluminum

AISI 202 stainless steel belongs to the iron alloys classification, while EN AC-46500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
91
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 14 to 45
1.0
Fatigue Strength, MPa 290 to 330
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 700 to 980
270
Tensile Strength: Yield (Proof), MPa 310 to 580
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 910
180
Melting Completion (Liquidus), °C 1400
610
Melting Onset (Solidus), °C 1360
520
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
81

Otherwise Unclassified Properties

Base Metal Price, % relative 13
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.8
7.6
Embodied Energy, MJ/kg 40
140
Embodied Water, L/kg 150
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 25 to 35
26
Strength to Weight: Bending, points 23 to 29
32
Thermal Diffusivity, mm2/s 4.0
41
Thermal Shock Resistance, points 15 to 21
12

Alloy Composition

Aluminum (Al), % 0
77.9 to 90
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0 to 0.15
Copper (Cu), % 0
2.0 to 4.0
Iron (Fe), % 63.5 to 71.5
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 7.5 to 10
0 to 0.55
Nickel (Ni), % 4.0 to 6.0
0 to 0.55
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
8.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.25