MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. Grade 6 Titanium

AISI 202 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 14 to 45
11
Fatigue Strength, MPa 290 to 330
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 490 to 590
530
Tensile Strength: Ultimate (UTS), MPa 700 to 980
890
Tensile Strength: Yield (Proof), MPa 310 to 580
840

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 910
310
Melting Completion (Liquidus), °C 1400
1580
Melting Onset (Solidus), °C 1360
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
7.8
Thermal Expansion, µm/m-K 17
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
30
Embodied Energy, MJ/kg 40
480
Embodied Water, L/kg 150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
92
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25 to 35
55
Strength to Weight: Bending, points 23 to 29
46
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 15 to 21
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.5 to 71.5
0 to 0.5
Manganese (Mn), % 7.5 to 10
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4