MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. Grade Ti-Pd18 Titanium

AISI 202 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
320
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
17
Fatigue Strength, MPa 290 to 330
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 700 to 980
710
Tensile Strength: Yield (Proof), MPa 310 to 580
540

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 910
330
Melting Completion (Liquidus), °C 1400
1640
Melting Onset (Solidus), °C 1360
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
8.2
Thermal Expansion, µm/m-K 17
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
41
Embodied Energy, MJ/kg 40
670
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25 to 35
44
Strength to Weight: Bending, points 23 to 29
39
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 15 to 21
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.5 to 71.5
0 to 0.25
Manganese (Mn), % 7.5 to 10
0
Nickel (Ni), % 4.0 to 6.0
0 to 0.050
Nitrogen (N), % 0 to 0.25
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4