MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. C66900 Brass

AISI 202 stainless steel belongs to the iron alloys classification, while C66900 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 45
1.1 to 26
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
45
Shear Strength, MPa 490 to 590
290 to 440
Tensile Strength: Ultimate (UTS), MPa 700 to 980
460 to 770
Tensile Strength: Yield (Proof), MPa 310 to 580
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 910
150
Melting Completion (Liquidus), °C 1400
860
Melting Onset (Solidus), °C 1360
850
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25 to 35
15 to 26
Strength to Weight: Bending, points 23 to 29
16 to 23
Thermal Shock Resistance, points 15 to 21
14 to 23

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
62.5 to 64.5
Iron (Fe), % 63.5 to 71.5
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 7.5 to 10
11.5 to 12.5
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
22.5 to 26
Residuals, % 0
0 to 0.2